
VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page1  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

Outcome of this unit-:  Mastering this unit enables you to handle runtime 
errors effectively, manage file input/output operations, and implement 
multithreading for concurrent execution. You'll write robust, efficient, and 
error-resilient Java applications, ensuring proper resource management, 
synchronization, and communication between threads. 

Exception Handling in Java 

The Exception Handling in Java is one of the powerful mechanism to 

handle the runtime errors so that the normal flow of the application can 

be maintained. 

Types of Java Exceptions 

There are mainly two types of exceptions: checked and unchecked. An 

error is considered as the unchecked exception. However, according to 

Oracle, there are three types of exceptions namely: 

1. Checked Exception 

2. Unchecked Exception 

3. Error 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page2  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

 

Difference between Checked and Unchecked Exceptions 

1) Checked Exception 

The classes that directly inherit the Throwable class except 

RuntimeException and Error are known as checked exceptions. For 

example, IOException, SQLException, etc. Checked exceptions are checked 

at compile-time. 

2) Unchecked Exception 

The classes that inherit the RuntimeException are known as unchecked 

exceptions. For example, ArithmeticException, NullPointerException, 

ArrayIndexOutOfBoundsException, etc. Unchecked exceptions are not 

checked at compile-time, but they are checked at runtime. 

3) Error 

Error is irrecoverable. Some example of errors are OutOfMemoryError, 

VirtualMachineError, AssertionError etc. 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page3  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

Java Exception Keywords 

Java provides five keywords that are used to handle the exception. The 

following table describes each. 

Keyword Description 

Try The "try" keyword is used to specify a block where we should place 

an exception code. It means we can't use try block alone. The try 

block must be followed by either catch or finally. 

Catch The "catch" block is used to handle the exception. It must be 

preceded by try block which means we can't use catch block alone. 

It can be followed by finally block later. 

Finally The "finally" block is used to execute the necessary code of the 

program. It is executed whether an exception is handled or not. 

Throw The "throw" keyword is used to throw an exception. 

Throws The "throws" keyword is used to declare exceptions. It specifies that 

there may occur an exception in the method. It doesn't throw an 

exception. It is always used with method signature. 

 

Java try block 

Java try block is used to enclose the code that might throw an exception. 

It must be used within the method. 

Syntax of Java try-catch 

try{     



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page4  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

//code that may throw an exception     

}catch(Exception_class_Name ref){}     

 

Java catch block 

Java catch block is used to handle the Exception by declaring the type of 

exception within the parameter. The declared exception must be the 

parent class exception ( i.e., Exception) or the generated exception type. 

However, the good approach is to declare the generated type of 

exception. 

The catch block must be used after the try block only. You can use multiple 

catch block with a single try block. 

Internal Working of Java try-catch block 

 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page5  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

The JVM firstly checks whether the exception is handled or not. If 

exception is not handled, JVM provides a default exception handler that 

performs the following tasks: 

o Prints out exception description. 

o Prints the stack trace (Hierarchy of methods where the exception 

occurred). 

o Causes the program to terminate. 

But if the application programmer handles the exception, the normal flow 

of the application is maintained, i.e., rest of the code is executed. 

Problem without exception handling 

Let's try to understand the problem if we don't use a try-catch block. 

Example 1 

TryCatchExample1.java 

public class TryCatchExample1 {   

   

    public static void main(String[] args) {   

           

        int data=50/0; //may throw exception    

           

        System.out.println("rest of the code");   

           

    }   

       



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page6  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

}   

Test it Now 

Output: 

Exception in thread "main" 

java.lang.ArithmeticException: / by zero 

As displayed in the above example, the rest of the code is not executed 

(in such case, the rest of the code statement is not printed). 

There might be 100 lines of code after the exception. If the exception is 

not handled, all the code below the exception won't be executed. 

Solution by exception handling 

Let's see the solution of the above problem by a java try-catch block. 

Example 2 

TryCatchExample2.java 

public class TryCatchExample2 {   

   

    public static void main(String[] args) {   

        try   

        {   

        int data=50/0; //may throw exception    

        }   

            //handling the exception   

        catch(ArithmeticException e)   

        {   

https://www.javatpoint.com/opr/test.jsp?filename=TryCatchExample1


VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page7  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

            System.out.println(e);   

        }   

        System.out.println("rest of the code");   

    }   

       

}   

Test it Now 

Output: 

java.lang.ArithmeticException: / by zero 

rest of the code 

 

 

Java finally block 

Java finally block is a block used to execute important code such as 

closing the connection, etc. 

Java finally block is always executed whether an exception is handled or 

not. Therefore, it contains all the necessary statements that need to be 

printed regardless of the exception occurs or not. 

TestFinallyBlock.java 

class TestFinallyBlock {     

  public static void main(String args[]){     

  try{     

//below code do not throw any exception   

https://www.javatpoint.com/opr/test.jsp?filename=TryCatchExample2


VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page8  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

   int data=25/5;     

   System.out.println(data);     

  }     

//catch won't be executed   

  catch(NullPointerException e){   

System.out.println(e);   

}     

//executed regardless of exception occurred or not   

 finally {   

System.out.println("finally block is always executed");   

}     

     

System.out.println("rest of phe code...");     

  }     

}     

Output: 

 

 

 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page9  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

 

 

Java throw keyword 

The Java throw keyword is used to throw an exception explicitly. 

We specify the exception object which is to be thrown. The Exception has 

some message with it that provides the error description. These 

exceptions may be related to user inputs, server, etc. 

class TestException 

{ 

 

 public int exception( int x,int y) 

 { 

  int r; 

  try 

  { 

 

  r=x/y; 

  return r; 

 

  } 

  catch(ArithmeticException ae) 

  { 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page10  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

   throw ae; 

  } 

 } 

public static void main(String [] args) 

{ 

int x,y,r; 

TestException ob=new TestException(); 

try 

{ 

x=Integer.parseInt(args[0]); 

y=Integer.parseInt(args[1]); 

r=ob.exception(x,y); 

 

System.out.println("add of two no "+r); 

} 

catch(NumberFormatException ae) 

{ 

 System.out.println("both should be Number"); 

} 

catch(ArithmeticException ae) 

{ 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page11  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

 System.out.println("second Nubmer must no be zero"); 

} 

catch(Exception ae) 

{ 

 System.out.println("Both the input should be not zero no"); 

} 

} 

} 

 

Java throws keyword 

The Java throws keyword is used to declare an exception. It gives an 

information to the programmer that there may occur an exception. So, it 

is better for the programmer to provide the exception handling code so 

that the normal flow of the program can be maintained. 

Exception Handling is mainly used to handle the checked exceptions. If 

there occurs any unchecked exception such as NullPointerException, it is 

programmers' fault that he is not checking the code before it being used. 

Syntax of Java throws 

1. return_type method_name() throws exception_class_name{   

2. //method code   

3. }   

Which exception should be declared? 

Ans: Checked exception only, because: 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page12  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

o unchecked exception: under our control so we can correct our 

code. 

o error: beyond our control. For example, we are unable to do 

anything if there occurs VirtualMachineError or StackOverflowError. 

Java throws Example 

Testthrows1.java 

1. import java.io.IOException;   

2. class Testthrows1 

3. {   

4.   void m()throws IOException 

5. {   

6.     throw new IOException("device error");//checked exception   

7.   }   

8.   void n()throws IOException 

9. {   

10.     m();   

11.   }   

12.   void p() 

13. {   

14.    Try 

15. {   

16.     n();   



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page13  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

17.    } 

18. catch(Exception e) 

19. { 

20. System.out.println("exception handled"); 

21. }   

22.   }   

23.   public static void main(String args[]) 

24. {   

25.    Testthrows1 obj=new Testthrows1();   

26.    obj.p();   

27.    System.out.println("normal flow...");   

28.   }   

29. }   

Test it Now 

Output: 

exception handled 

normal flow... 

 

Java I/O Tutorial 

Java I/O (Input and Output) is used to process the input and produce the 

output. 

Stream 

https://www.javatpoint.com/opr/test.jsp?filename=Testthrows1


VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page14  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

A stream is a sequence of data. In Java, a stream is composed of bytes. It's 

called a stream  

OutputStream 

Java application uses an output stream to write data to a destination; it 

may be a file, an array, peripheral device or socket. 

InputStream 

Java application uses an input stream to read data from a source; it may 

be a file, an array, peripheral device or socket. 

Let's understand the working of Java OutputStream and InputStream by 

the figure given below. 

 

 

OutputStream class 

OutputStream class is an abstract class. It is the superclass of all classes 

representing an output stream of bytes. An output stream accepts output 

bytes and sends them to some sink. 

ByteStream Classes in Java 

ByteStream classes are used to read bytes from the input stream and write 

bytes to the output stream. In other words, we can say that ByteStream 

classes read/write the data of 8-bits. We can store video, audio, characters, 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page15  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

etc., by using ByteStream classes. These classes are part of the java.io 

package. 

The ByteStream classes are divided into two types of classes, i.e., 

InputStream and OutputStream. These classes are abstract and the super 

classes of all the Input/Output stream classes. 

InputStream Class 

The InputStream class provides methods to read bytes from a file, console 

or memory. It is an abstract class and can't be instantiated; however, 

various classes inherit the InputStream class and override its methods. The 

subclasses of InputStream class are given in the following table. 

OutputStream Class 

The OutputStream is an abstract class that is used to write 8-bit bytes to 

the stream. It is the superclass of all the output stream classes. This class 

can't be instantiated; however, it is inherited by various subclasses that are 

given in the following table. 

 

CharacterStream Classes in Java 

The java.io package provides CharacterStream classes to overcome the 

limitations of ByteStream classes, which can only handle the 8-bit bytes 

and is not compatible to work directly with the Unicode characters. 

CharacterStream classes are used to work with 16-bit Unicode characters. 

They can perform operations on characters, char arrays and Strings. 

However, the CharacterStream classes are mainly used to read characters 

from the source and write them to the destination. For this purpose, the 

CharacterStream classes are divided into two types of classes, I.e., Reader 

class and Writer class. 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page16  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

Reader Class 

Reader class is used to read the 16-bit characters from the input stream. 

However, it is an abstract class and can't be instantiated, but there are 

various subclasses that inherit the Reader class and override the methods 

of the Reader class. All methods of the Reader class throw an IOException. 

The subclasses of the Reader class are given in the following table. 

File Operations 

We can perform the following operation on a file: 

o Create a File 

o Write to a File 

o Read from a File 

Create a File 

Create a File operation is performed to create a new file. We use 

the createNewFile() method of file. The createNewFile() method returns 

true when it successfully creates a new file and returns false when the file 

already exists. 

Example :- 

 

 

//Importing File class 

import java.io.File; 

// Importing the IOException class for handling errors 

 

 

https://www.javatpoint.com/java-reader-class


VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page17  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

import java.io.IOException; 

 

class CreateFile 

{ 

    public static void main(String[] args) 

    { 

        try 

        { 

            // Creating an object of a file 

            File f0 = new File("E:FileOperationExample15.txt"); 

            if (f0.createNewFile()) 

            { 

                System.out.println("File " + f0.getName() + " is created 

successfully."); 

            } 

            else 

            { 

                System.out.println("File already exists in the directory."); 

            } 

        } 

        catch (IOException exception) 

        { 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page18  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

            System.out.println("An unexpected error occurred."); 

            exception.printStackTrace(); 

        } 

    } 

} 

 

 

 

 

Write to a File 

The next operation which we can perform on a file is "writing into a file". 

In order to write data into a file, we will use the FileWriter class and 

its write() method together. We need to close the stream using 

the close() method to retrieve the allocated resources. 

Let's take an example to understand how we can write data into a file. 

WriteToFile.java 

package com.javatpoint; 

import java.io.FileWriter; 

public class FileWriterExample { 

    public static void main(String args[]){ 

         try{ 

           FileWriter fw=new FileWriter("E:fileFileOperationExample15.txt"); 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page19  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

           fw.write("Welcome to javaTpoint."); 

           fw.close(); 

          }catch(Exception e){System.out.println(e);} 

          System.out.println("Success..."); 

     } 

} 

 

Read from a File 

The next operation which we can perform on a file is "read from a file". 

In order to write data into a file, we will use the Scanner class. Here, we 

need to close the stream using the close() method. We will create an 

instance of the Scanner class and use 

the hasNextLine() method nextLine() method to get data from the file. 

Example:- 

// Importing the File class 

import java.io.File; 

// Importing FileNotFoundException class for handling errors 

import java.io.FileNotFoundException; 

// Importing the Scanner class for reading text files 

import java.util.Scanner; 

 

class ReadFromFile { 

    public static void main(String[] args) { 

https://www.javatpoint.com/Scanner-class
https://www.javatpoint.com/post/java-scanner-hasnextline-method
https://www.javatpoint.com/post/java-scanner-nextline-method


VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page20  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

        try { 

            // Create f1 object of the file to read data 

            File f1 = new File("E:fileFileOperationExample15.txt"); 

            Scanner dataReader = new Scanner(f1); 

            while (dataReader.hasNextLine()) { 

                String fileData = dataReader.nextLine(); 

                System.out.println(fileData); 

            } 

            dataReader.close(); 

        } catch (FileNotFoundException exception) { 

            System.out.println("Unexcpected error occurred!"); 

            exception.printStackTrace(); 

        } 

    } 

} 

 

Delete a File 

The next operation which we can perform on a file is "deleting a file". In 

order to delete a file, we will use the delete() method of the file. We don't 

need to close the stream using the close() method because for deleting a 

file, we neither use the FileWriter class nor the Scanner class. 

Let's take an example to understand how we can write data into a file. 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page21  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

DeleteFile.java 

// Importing the File class 

import java.io.File; 

// Importing FileNotFoundException class for handling errors 

import java.io.FileNotFoundException; 

// Importing the Scanner class for reading text files 

import java.util.Scanner; 

 

class ReadFromFile { 

    public static void main(String[] args) { 

        try { 

            // Create f1 object of the file to read data 

            File f1 = new File("E:fileFileOperationExample15.txt"); 

            Scanner dataReader = new Scanner(f1); 

            while (dataReader.hasNextLine()) { 

                String fileData = dataReader.nextLine(); 

                System.out.println(fileData); 

            } 

            dataReader.close(); 

        } catch (FileNotFoundException exception) { 

            System.out.println("Unexcpected error occurred!"); 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page22  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

            exception.printStackTrace(); 

        } 

    } 

} 

 

Explanation: 

In the above code, we import the File class and create a class DeleteFile. 

In the main() method of the class, we create f0 object of the file which we 

want to delete. In the if statement, we call the delete() method of the file 

using the f0 object. If the delete() method returns true, we print the 

success custom message. Otherwise, it jumps to the else section where we 

print the unsuccessful custom message. 

All the above-mentioned operations are used to read, write, delete, and 

create file programmatically. 

 

 

 

 

 

 

 

 

 

Thread Concept in Java 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page23  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

A Thread is a very light-weighted process, or we can say the smallest part 

of the process that allows a program to operate more efficiently by 

running multiple tasks simultaneously. 

 

 

 In a simple way, a Thread is a: 

o Feature through which we can perform multiple activities within a 

single process. 

o Lightweight process. 

o Series of executed statements. 

o Nested sequence of method calls. 

Life cycle of a Thread (Thread States) 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page24  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

In Java, a thread always exists in any one of the following states. These 

states are: 

1. New 

2. Active 

3. Blocked / Waiting 

4. Timed Waiting 

5. Terminated 

 

New: Whenever a new thread is created, it is always in the new state. For 

a thread in the new state, the code has not been run yet and thus has not 

begun its execution. 

Active: When a thread invokes the start() method, it moves from the new 

state to the active state. The active state contains two states within it: one 

is runnable, and the other is running. 

o Runnable: A thread, that is ready to run is then moved to the 

runnable state. In the runnable state, the thread may be running or 

may be ready to run at any given instant of time. It is the duty of the 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page25  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

thread scheduler to provide the thread time to run, i.e., moving the 

thread the running state. 

A program implementing multithreading acquires a fixed slice of 

time to each individual thread. Each and every thread runs for a short 

span of time and when that allocated time slice is over, the thread 

voluntarily gives up the CPU to the other thread, so that the other 

threads can also run for their slice of time. Whenever such a scenario 

occurs, all those threads that are willing to run, waiting for their turn 

to run, lie in the runnable state. In the runnable state, there is a 

queue where the threads lie. 

o Running: When the thread gets the CPU, it moves from the 

runnable to the running state. Generally, the most common change 

in the state of a thread is from runnable to running and again back 

to runnable. 

Blocked or Waiting: Whenever a thread is inactive for a span of time (not 

permanently) then, either the thread is in the blocked state or is in the 

waiting state. 

 

 

 

Synchronization in Java 

Synchronization in Java is the capability to control the access of multiple 

threads to any shared resource. 

Java Synchronization is better option where we want to allow only one 

thread to access the shared resource. 

Types of Synchronization 

There are two types of synchronization 

1. Process Synchronization 



VISION INSTITUTE OF TECHNOLOGY,  Subject:- Object Oriented Programming with 
Java (BCS403) 

ALIGARH  
 

Unit-1 Object Oriented Programming with Java 

 
 
Page26  Faculty: SHAHRUKH KAMAL 

Shahrukhkamal7@gmail.com 
 

 

2. Thread Synchronization 

Here, we will discuss only thread synchronization. 

Thread Synchronization 

There are two types of thread synchronization mutual exclusive and inter-

thread communication. 

1. Mutual Exclusive 

1. Synchronized method. 

2. Synchronized block. 

3. Static synchronization. 

2. Cooperation (Inter-thread communication in java) 

Mutual Exclusive 

Mutual Exclusive helps keep threads from interfering with one another 

while sharing data. It can be achieved by using the following three ways: 

1. By Using Synchronized Method 

2. By Using Synchronized Block 

3. By Using Static Synchronization 

Concept of Lock in Java 

Synchronization is built around an internal entity known as the lock or 

monitor. Every object has a lock associated with it. By convention, a thread 

that needs consistent access to an object's fields has to acquire the 

object's lock before accessing them, and then release the lock when it's 

done with them. 

 
 


